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T H E O R E T I C A L  S U B S T A N T I A T I O N  O F  T H E  

P O S S I B I L I T Y  O F  I N D U C I N G  A P O N D E R O M O T I V E  

T H E R M O D Y N A M I C  F O R C E  I N  A S O L I D  A N D  A G A S  

O. V. Minin UDC 536.2:517.97 

Based on the principle of least action extended by the author to heat conduction in a solid, owing to the 

formal analogy between time and absolute temperature stated in the 1980s by means of the formalism of the 

Hamil ton-Jacobi  equation an expression is obtained for the ponderomotive thermodynamic force in a solid 

and a gas. 

1. In 1987 a variational principle for heat conduction was completely formulated [I ]. Later [2 ] it was shown 

that an analog of the Lagrange function exists and that the density of the Lagrange function for heat conduction 

in the formalism of integrals over trajectories is equal to 

OT 
L = PCvT --~ + 2t (VT) 2 - V • (arv73.  (1) 

In [2 ] it is proved that this Lagrangian pertains to a singular type since it can be transformed into a balance 

equation, namely, the heat conduction equation. 

A fluctuation functional as an analog of action represents fluctuation of the internal energy accumulated in 

any interval of time [1 ]: 

J (T) = A D =  f f c v T - ~  
t X  

] 1 ~r2 (2) + A (vT") dXdt  - f f 2TVnTdSdt  < -~ . 
t S 

Some invariant properties of d and L are discussed in [2 ]. 
By virtue of an identity transformation, L can be represented in the following form: 

2k ot 4k ~oc~ k r  2) 

As established in [1 ], the density of energy fluctuation in the hydrodynamic stage is 

D (x, t) =/,pcvT 2 (x, t). 

(3) 

(4) 

Consequently, Eq. (3) acquires the form 

1 0 D  a ( V D ) 2 _ V .  VD = 0  a -  . (5) 
2~ o--7 + ~ ' pcv 

We consider the local dissipative cumulant (LDC) and introduce a small interval of time (for instance, 

- 1 0 - 1 1 - 1 0  -7 sec) in order to operate with the LDC and remain within the framework of the hydrodynamic 

stage: 
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p OT ] 1 K = AD~ = f f cvT-~f + a (VT) 2 - V  . (aTVT) dVdt <_ -~ kT 2, (6) 
r A V  

where AV is some small volume of the solid, which is, generally speaking, indeterminate.  However,  it is known that 

the volume should be such that local thermodynamic equilibrium is established in it at any  moment  on the t ime 

scale, but limited each time by the interval ~. Such a subdivision of time intervals into small subintervals is used 

in [3 ] in determinat ion of the Lagrange and Hamilton functions to provide the condition of maximum probabil i ty 

of t ransi t ion at each point of the t ra jec tory  of the thermodynamic  system. As will be seen below, rigorous 

determinat ion of the small interval r by its lower and upper values is of no crucial importance since abnormal ly  

large fluctuations of the internal energy in a solid last for a time A t -  1 0 - 1 3 - 1 0  -12 sec [4 ]. This  was shown for 

one-, two-, and three-dimensional  crystal lattices with different interaction potentials in computer-a ided simulation. 

According to theoretical and model results of the authors,  ord inary  deviations of atomic energies from the most 

probable value correspond,  in their  terminology, to the "thermal life" of the solid. 

Long before the results of [4 ] it was shown theoretically in [5 ] that "short-l ived large energy fluctuations" 

of atoms have a lifetime At - 10 - 1 3 - 1 0  -12 sec. This feature of the energy fluctuation of atoms in a solid indicates 

that the definit ion and evaluation of the cumulani K according to (6) are  quite satisfactory since densi ty  integrat ion 

is implemented (definitely) on the introduced interval z -- 10 - l l -  10 -7 sec. In o ther  words, the intervals At E r 

can be considered as the sets approaching zero measure. 

Consequently,  we have a definition and a satisfactory evaluation of the LDC. Then  Eq. (5) can be modified 

to the form 

OK 1 + (VK) 2 - avzK = 0 .  (7) 
0~- k max T 2 

2 a 

Expression (7) is similar to the Hami l ton - Jacob i  equation. In addit ion to two classical analogs it contains one more 

term that  corresponds to the quantum diffraction term tTiX/2m)p-Lr2V2p 1/2, which appears  in the Schr~idinger 

equation in considerat ion of action as the phase of the probability wave. 

T h e  Ham i l t on - Jacob i  equation was obtained in [3] for the case of non-Gauss ian  fluctuations in the 

Boltzmann thermodynamic  limit k ~. Since energy fluctuation is a Markov process (with a Gaussian dis t r ibut ion) ,  

the derivative OK/Ot = 0 and at the same time we can set V2K = 0. The  multiplier l/2(kmaxT2/a) = 1/2G does not 

tend to zero and,  consequently,  we obtain the eikonal equation 

( v r )  z = 0 .  (8) 

It is obvious that (8) is the equation of the degenerate  eikonal K. However, despite this we obtain an analog of the 

law of refract ion in geometrical optics. Taking into account that  we are  considering the process of heat  conduct ion 

across the phase boundary  of two bodies with different thermal conductivities, we can write for any  e-neighborhood 

at the boundary  

2 2 
'~'1 (VKI)  z = 0 ,  Jl 2 (VKz) 2 = 0 .  (9) 

According to the infinitesimal estimate (6) we have 

J-IT1VT1 = 22T2VT2 (to) 

or 

VTI 22 (11) 
~IVTI  = ~2VT2 ~1~ ~ 2  = ~1 ' 
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where T 1 -- T 2 is fulfilled by virtue of the energy continuity at the boundary.  Consequently,  we have obta ined the 

law of refraction of gradients or the continuity condition of the heat flux. The  degeneracy of (8) does not allow, 

unfortunately,  derivation of the law of refraction similarly to the method of G. Bruns in geometrical optics descr ibed 

in [6 ]. 

If we represent  temperature  in vector form with the aid of the segment de termined by the functions Tl (X, 

t) and T2(X, t) so that the ensemble of all elements of the type 

e T ( X ,  t) = [aT 1 + (1 - a )  T 2 l e ,  (12) 

will prescribe some l inear manifold [7 ] with a direction, where T1, 7"2 -* T, a E [0, 1 ], and e is the unit vector 

along this direction, then the condition 

eTVT = 0 (13) 

corresponds to orthogonali ty of the heat flux lines of the isothermal surface T(X,  t) = const at any  point of the 

front and at any  moment of time. 

In the context  of the developed analogy we must  now de te rmine  the velocity of i so the rmal - su r face  

propagation by the Jacobi method.  On the one hand,  we can formally write 

dK = k T d T .  (14) 

and on the other  hand,  the following representat ion is valid: 

dK = I VKI a s  = I VK] udt = kT  I VTI udt ,  

whence we have 

(15) 

aT~at pc v aT~at 
u - I v r l  or u -  . ( 1 6 )  pcv IVTI 

and consequently 

2V2T aV2T (17) 
u -- IVTI or u = e r .  PCv ] V T  [ 

The  last formula coincides with an expression obtained by a different method [8 ]. 

Developing the envisaged analogy further,  we can derive the "pulse" of a tempera ture  field by  the same 

method as in mechanics: 

P T =  V K =  V ( l  kT  2) = k T V T .  (18) 

In [9 ] Atkins suggested a hypothesis according to which "for a number  of formal reasons tempera ture  can 

be considered as imaginary time." However, he did not obtain any  far-reaching consequences from this assumption.  

At the same time if we eliminate the imaginary unit and assume that t --, T, then, as shown below, we obtain very 

surprising and,  which is most important,  correct results and consequences. Then,  adopting this analogy we can 

formally write the "law" of determinat ion of the "force" of the temperature  field 

dPT 
Fr  = a T  = k V T  = V (kT) .  (19) 

It is easy to see that the vanishingly small force F (quasiforce according to [10 ]) is caused in the present  approach 

by normal thermal  fluctuations, and the well-known idea of thermodynamic  force shows itself in a new light. 

In accordance with the interpretation discussed, the term TpcvAV(aT/at)dt  in (6) is similar to the definition 

of the action S = - E t ,  and the succeeding derivative gives 

908 



dK kT, (20) 
H -  dT - 

where kT is the modulus of any distribution. 

Let us ascertain that the canonical Hamilton equations occur. According to the relation 

i 

under  the condition L = 0 for heat conduction we obtain 

(21) 

Then  the relations 

Oq T 1 T (22) 
kT = kT IVT[ qT, ~/T = OT - [VT[ ' qT -- [VT[ " 

a_p.p k V T -  oH~aT (23) 
bT = aT = Oq/O-------T ' 

a 
07 (kT) OH~aT (24) Oq 

tiT : a - -T -  O ap/aT ' ( rv73 aT 

must be valid and we obtain a close analogy with the Hamilton equations: 

OH. O H  . (25) 
P r =  aq r ,  ~ l r -  ap r 

As shown in [11 ], the canonical Hamil ton equations can be derived from the general ized variational 

principle (2.8) in the case of non-Gaussian fluctuations as well. 

We will develop this approach fur ther  with allowance for the occurrence of non-Gauss ian  fluctuations due 

to some external  action, the physical nature of which is of no interest  to us now. Considering the obta ined analog 

of the Hami l ton - Jacob i  equation, we assume that the terms OK~at, aV2K are not equal to zero as a consequence 

of non-Gauss ian  fluctuations. Equation (7) is modified to the following form: 

( V K ) 2 -  2 k m a x T 2  ( a V 2 K -  O K ) a  --~ (26) 

o r  

/ = -S  vZr - 19- 1 " 
(27) 

Thus,  we have obtained an analog of the nondegenera te  equation of the eikonal (26). In accordance with 

the developed method the derivative with respect to the temperature  T gives 

As established, the local dissipative cumulant (LDC) is 
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[ c T  OT ] K=Yr AV f [P v --~ +2 (VT)  2 - V "  0VT) dVd t ,  (29) 

and then the derivative of the numerator is 

OT = pcv A V 07".0t 

Consequently, we have an analog of the nondegerate induced force FT or fT: 

(30) 

OT 
FT PCv d---t- VK (31) 

f T -  A V -  - r 2 O K ~ - -  
~ t f  aV K _ _ ~ _  [ [VK[ ' 

where V K / 1 V K I  = e k is the unit vector coinciding with the gradient of K. This means that fT is the volume density 

of the force induced in a solid due to an icrease (or decrease) in the temperature and due to redistribution of the 

LDC of functions OK/Or and V2K that are not equal to zero. As concerns these two functions, it is pertinent to note 

that the authors of [4 ] established in their experiments that spontaneous energy fluctuations of atoms can migrate 

in a solid due to interference effects (phonons). The latter, overlapping, form migrating packets, and then we can 

obviously assume that VK ~ 0, OK/Ot ~ O. When a solid is exposed to an external energetic action, these 

phenomena will be enhanced because of possible resonant effects. 

The physical dimensions of the denominator in (31) correspond to velocity. We assume that in order of 
magnitude it is equal to the velocity of temperature-field propagation (17). Then (31) can be rewritten in vector 

form as 

aV2T dT 
- f r  ~ er = - PCv - ~  ek ,  (32) 

where ek, er are unit vectors defined above. 
By virtue of the heat conduction equation the term aV2T is equal to OT/Ot. Then equality (32) is 

transformed to the form 

fT = PcvVT , FT = PCv A W T  = VU, (33) 

where U is the internal energy in the corresponding volume. It is evident that the last formula generalizes relation 

(19) obtained earlier, and expression (33) is similar to the definition of potential force. 

Thus, the two formulas 

fT = PcvVT , q = -- 2tVT (34) 

show that a temperature gradient leads to both the occurrence of a heat flux and the formation of a ponderomotive 

force. It is easily seen that the vectors fT and q are opposite in direction. However, the formula fT --PCv V T  is used 

as an approximation of formula (31). 

Using the expression for the force density 

fT = PCvVT, 

we arrive at the magnitude of the heat flux 

q = af T = - cvPaVT = - 2VT. (35) 
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It is clear thal the relationship between q and f r  is linear and a is a constant kinetic coefficient. This corresponds 

formally to the Onsager representation 

Z = LX, (36) 

where J and X are the heat flux and the thermodynamic force, respectively; L is the kinetic coefficient. In this 
Cparticular) case it is necessary to write 

j : q  

However we should apparently agree with a constantly arising question: why are X and ;t such strange 

parameters representing the force and the coefficient? As will be shown below, it is more reasonable to determine 

the thermodynamic force by formula C33). Thus, the scalar product of the two opposite vectors q and fr gives 

q "fr = - 2 pc  v (VT) 2 . (38) 

The composition 2(VT) 2 is the "trace" of the local entropy production cr - - I (VT)2/T 2. Despite the note about the 

strange character of the force and the coefficients, we nevertheless use formula (22.54a) in Sec. 22.5 of [12 ], where 

is determined in terms of the kinetic coefficient L0: 

1 o 
- T2 f f exp ( -  et) ( 4  (x), 4 (x', t)) d x ' d t ,  (39) 

- - O O  

here, the integral is a two-time retarded Green correlation function. Zubarev [12 ] represents ,l, in fact, according 

to the Onzager interpretation of the thermodynamic force X = V(I/T) in order to match subsequent relations 

without internal contradictions. 

In [12] (Sec. 22.8) the author suggested another definition of the thermodynamic force, namely, FoCk, t) 

= tick, t) (in the case of heat conduction), where f l(k,  t) are Fourier components in the expansion of the 

thermodynamic parameter in the space variables, provided that the rate of change of F0(X, t) in time is vanishingly 

small. It should be noted that the new thermodynamic force tick, t)(/3 = I /TCX ,  t)) is determined in terms of the 

formalism so that the l inear relations between the fluxes and the forces are retained in constructing a 

nonequilibrium statistical operator (a distribution function). 

Meanwhile, using an original method in passing from the quantum to the "classical version of Eq. (3) and 

assuming that  the local conservation laws are valid," W. M. Visscher [10] obtained a thermal-conductivity 

coefficient similar to the Green-Kubo and Zubarev formulas. However, he succeeded in doing this by making the 

assumption that Vfl - V(1/T) (as applied to the nonequilibrium distribution function) can be considered as a 

constant quantity in calculating the correlation function and the statistical mean. In fact, W. M. Visscher showed 

that the thermal conductivity coefficient determined by his formula (9) or the Zubarev formula (39) must not be 

explicitly related to the factor 1/7 ̀2 since the latter stems from a purely mathematical operational procedure. In 

particular, the author of [10 ] writes that "2 also depends implicitly on Vfl via the Poisson bracket and this should 

be considered here, naturally, not as a linear response but as a response that includes the effect of the action of 

all higher orders of Vfl." This concluding remark seems rather controversial. 
In the context of the above considerations and references it is, perhaps, reasonable to consider 1 -- 

L o / T  2 as an intermediate coefficient that has no physical meaning. 

Nevertheless, substituting (39) into formula (38) we arrive at 

0 t] (vr)2 q'fr=- f-o  f exp(et)(J Q(X),J Q(x',t))dx'd p c  v 72. , (40) 
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and the Green's function (up to a sign) plays the role of the thermal diffusivity a. Here it is seen that the coefficient 
0 

- [ f  f exp (et)(J~(x), J~(x', t))dx'dl]pcv turns out to be positive if the Green's function is negative. In Secs. 15, 
- - 0 0  

17, 18, etc. of [12 ] Zubarev represents the retarded Green's function with a negative sign. If we assume that this 

statement is correct, further manipulations will not involve any difficulties or contradictions. 

Hence we have 

it (VT)2 = a .  (41) 
f r ' q  = T 2 

At the same time, substitution of ~l, determined in this way, into (38) leads to a correct determination of 

both the thermal conductivity coefficient 2 and the local source of entropy. Extremely curiously (and alarmingly), 

some kind of antinomy arises here: on the one hand, 2 is determined (in our opinion, incorrectly) operationally, 

but on the other hand, the coefficient is recovered correctly by using another operational procedure. This puzzling 

fact remains to be explained. 

The possibility of representing a with the aid of fT = V(PcvT) and q - -aV(Pcv T) allows the local entropy 

production to be written in the form 

= ~l (VU) 2 (42)  

d ' 

where U is the density of the internal energy. The entropy flow is 

~VT - ~lV In U (43)  Js = - T  = 

The local source and the entropy flow can be represented in another way: 

a = ; ~ ( V I n U ) 2 = ; ~ ( V I n ( F + T S ) ) 2 = 2  V l n F  1 +  (44) 

(45) 

where F is the density of the free energy. 
Using well-known relations of statistical thermodynamics, we substitute F and TS into (44): 

a = , l  V I n F + V I n  [1 + 

0 In Z~ 
kT l n Z +  T OT ] 

- k T  In Z 

(46) 

where F = - k T  In Z, S = k [ln Z + TO In Z/OT], and Z is the statistical integral, while In Z is the volume density 

of the logarithm of the statistical integral. Simple transformations of (46) yield 

~= ,~  V I n F +  Vln - T ~  . 

The analogous formula for the entropy flow Js is 

(47) 
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= T (48) JS --;t V I n F + V I n  - l n Z J J "  

It is easy to see that the expression (0 In Z/OT)/In Z is the "sensitivity" of the logarithm of the integral 

of states to a change in temperature. For the case of statistical equilibrium of a thermodynamic system with a 

prescribed number of particles and volume, the statistical integral for the canonical ensemble is 

Z = f e x p ( - H ( p ' q )  ) k T  Ndpdq! :h 3N " (49) 

Since 

OZ 
OlnZ  / ,  OT (50) 

OT / 'n Z - Z ln-----Z 

and Z depends explicitly on T only through the increment of the exponent, we can assume that 

Vln T 0"T ~ o ,  

because in the subsequent discussion only weakly nonequilibrium states such that 

This approach to a vanishingly small value is confirmed, with a high degree of accuracy, for an ideal gas, 

which is demonstrated in the next section. 

As a result of the assumption made, we obtain 

o = 2  [ V I n F I  2, .I s = - ~ I V I n F .  (52) 

(51) 

I V T I / T  2 << 1 are considered. 

Representation of the local source and the entropy flow in terms of the "spatial sensitivity" of the free energy and 

its square 2 (VF/tO and 2 (VF/F) 2 can considerably widen earlier concepts of nonequilibrium thermodynamics. In 

particular, for the case of heat conduction the Onsager definition 

a = J X ;  J = - ) . V T ;  X = V  = -  , (53) 

based on use of the temperature and its gradient in introducing the physically nonmeasurable thermodynamic force, 

is replaced by another by passing to the main thermodynamic potential F, about which Zubarev has written that 

"this function determines all the thermodynamic properties of a system" [12, p. 29 ]. In our opinion, this transition 

stands up to the Bohr correspondence principle since it brings the method of investigation of nonequilibrium 

thermodynamic systems back to physical quantities obeying the principle of vertification. 

2. We consider an ideal gas and write an expression for In Z0: 

l n Z  0 = - ~ ( l n 2 ~ + I n m + l n k T )  + N l n  V - I n N !  (54) 

o r  

In Z o - 
3N In 2at kmTV 2/3 
2 N 2/3 

provided that In N !  = N In N .  

In order to deal with volume densities, it is necessary to perform some transformations: 

(55) 
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N In Z 0 3n 2at k m T  
n = - -  ; In Z 0 - - -  - In 2/---------3-- ; 

V V 2 n 

3n 2zr k m T  O In Z 0 3n 
F =  - k T - - l n - - ;  - -  - 2/3 2 n OT 2T 

(56) 

Consequently,  the local entropy production is 

o r = 2  I V In F + V In 
T 2 T  (57) 

or 

(58) 

or 

[ (2/3)]n 
o = , ; t  V I n F + V I n  l n Z T r k m T  

It is necessary to evaluate the order  of magnitude of the second term: 

(59) 

2at k m T  = 6.28- 1.38- 10-23-51 • 10-27T -=- 4 6 . 1 0 - 5 ° T .  

If n E [1015-1020] and T E [300--1000] K, then 

o =  In l n 2 a r k m T  E 52 + and V o - 0 ,  (60) 

whence we obtain with a high degree of accuracy that 

ty=~(VlnF)2=2 (Y-F-~)2 (61) 

We consider some process of excitation of a weakly nonequilibrium state in the ideal gas. The  total entropy 

after a lapse of time t is equal to 

S = f f a dVat  + f f V . J s  dVdt  + S O . (63) 
t V  t V  

S = f f 2 (V In F) 2 dVdt  + f f 2V- (V In F) dVdt + S O . 
t V  t V  

Since the free-energy density is 

(64) 
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3 1 2/3 
F = ~ nkT In ~ n , (65) 

the total entropy is 

S = f f A V In ~- + In n + In k + In T + In In ~ . .  avat  + 
t V 

3 n 2 / 3  
+ f f 2V V I n - ~ + l n n + l n k + l n T + l n l n ~ / .  dVdt + S O . 

t V 
(66) 

Using the above evaluation, we obtain 

[ ]2 
s = f f A  V l n T + V l n n  

t V 
dVdt + f S ; t V . [ V l n T + V l n n ]  dVdt  + S 0, 

t V 
(67) 

Consequently, 
2 

s -- J" f , l  (v  in kn73 
t V 

dVdt + f f 2V. (V In knT) dVdt + S O . 
t V 

(68) 

In conformity with the equation of state of the ideal gas p = nkT we can write 

2 

t V  t V  

(69) 

According to the first law of thermodynamics 

T T T 
(70) 

Performing volume differentiation, we obtain 

2 

+ V-~TT ] dt+Tft ~ ' V ' [  Ivnln + V-~TT ] d t + ~ v t - k T l n Z o ] .  (70 

The next derivative with respect to t leads to the expression 

-~ = + V. - --~ ~ -dv (kT In Zo) (72) 

or  

d-td = + V -  - - +  l n 2 ~ + l n k + l n T - ~ l n - - ~  . 

If N and T are constant quantities for a rather short time, then assuming that the third term is equal to zero, we 
arrive at 

2 

d ( 2 - ~ )  --- ( - ~ ) d t  + V ' ( ?  + V T )  . (74) 

Based on the restrictions IVnl << n and IVTI << T, we determine that 

2 
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& = IVpl = p ~ • 

After differentiation and some transformations we obtain 

(76) 

: e r  

The expression in parentheses is the difference of the corresponding sensitivities in excitation of the nonequilibrium 
state in some process. If the sensitivity to pressure excitation is higher than to temperature excitation, then the 

force fT = Vp exists and is equal to 

fT = n k V T  + k T V n .  (78) 

However, because of the smal lness  of I Vnl as compared to n (e.g., I Vnl = 101° and n - 102°), i.e., owing 

to the introduced limitation related to the weak nonequilibrium state of the system, an expression is obtained for 

the actual thermodynamic force associated with the corresponding actual flow: 

fT = PCvVT , fT = n k V T  (q = - 2VT).  (79) 

The force f r  induced in a solid and a gas is rather easily detected experimentally. Experiments have been 

carried out at the St. Petersburg Institute of Precision Mechanics and Optics (SPIPMO) in the department of physics 
and electrical engineering together with assistant professor N. N. Gubanov. The author thanks him for help and 

fruitful discussions. The experiments were recorded on a video cassette in 1997 and are available at the department 

of physics at the SPIPMO. 

N O T A T I O N  

T, absolute temperature; 2, thermal-conductivity coefficient; cv, specific heat; p, density of the substance; 

k, Boltzmann constant; D ( X ,  t), volume density of internal-energy fluctuations; J(T) ,  internal-energy fluctuation 

accumulated in some interval of time; K = AD~, local dissipative cumulant (LDC) or local "instantaneous" 
accumulated fluctuation; fT, volume density of the ponderomotive thermodynamic force; U, density of the internal 

energy; F, density of the free energy; Z, statistical integral; Z0, statistical integral for the case of an ideal gas; In 

Z, volume density of the logarithm of the statistical integral. 
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